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Abstract

The expectations E[X(,)], E[Z(1 )], and E[}il )] of the minimum of n independent geonietric, modified

geometric, or exponential random variables with matching expectations differ. We show how this

is accounted for by stochastic variability and how E[X(1)]/E[Yo) ] equals the expected number of

ties at the minimum for the geometric random variables. We then introduce the "shifted geometric

distribntion", and show that there is a unique value of the shift for which the individual shifted

geometric and exponential random variables match expectations both individually and in their

minimums.
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1 Introduction

The purpose of this note is to compare the distributions of the minimums of two sets of ran(lore vari-

ables, respectively with geometric and exponential distributions, having pairwise matching means.

The geometric distribution is the discrete analog of the exponential distribution and can be applied

to a variety of performance models which can be analyzed by analytic or simulation methods. The

following notation is used:

* IN = {0, 1,2,...}, the natural numbers.

. IN + = {1,2,3,...}, the positive natural numbers.

• N = {l,2,...,n}, the first n natural numbers (n is a constant which will be clear from tim

context).

• FA(t) = Pr{A _< a}, the cumulative distribution function (CDF) of a random variable A.

• FA(t) = 1 - FA(t), the complement of the CDF of A (its survivor function).

2 Geometric, modified geometric, and exponential distributions

Two random variables X and Z are said to have a geometric distribution with parameter a E (0, 1),

X ,-_ Geom(a), and a modified geometric distribution with parameter fl E (0, 1), Z _ ModGeom(fl),

[4] if their probability mass fimctions (pmfs) are, respectively,

Vk e IN+ , Pr{X = k} = a(1 - c_)k-' and

Vk • IN, Pr{Z = k} =fl(1 _fl)k,

from which it follows that their CDFs at the mass values are

k

Vk • _N+, Pr{X _< k} = _c_(1 - c_)t-1 = 1 - (l - c_)_: and
l=l

k

Vk • IN,Pr{Z _< k} = _fl(1 - fl)t = 1 - (1 - fl)k+,,
/=0

and that their expectations are

E[x]= , = _1 and
k=l

OO

k=0 -- - _

Informally, the difference between a geometric and a modified geometric distribution with the

same parameter is the way in which they count: the geometric distribution starts at one, the

modified geometric distribution starts at zero. Hence, if X --_ Geom(,_), X - 1 ,-_ ModGeom(c 0.

Equivalently, the geometric distribution models the trial number of the first "success" in repeated



independentBernoulli trials, whereasthe modifiedgeometricdistribution modelsthe numberof
trials beforethe first success.

The aboveassumesthat the "time-step"of the distribution is tile sameasthe units in which
timeismeasured.ThisrestrictionisremovedbyconsideringX and Z as random variables assuming

values in {kce : k ¢ IN+} or {kce : k E IN}, respectively, for some time-step co >" 0:

X..oGeoln(r_,ce) e==_ VtEIR, Pr{X <t}= {_ ol-(l-cQ[_J otherwiseift>-0 and

,.o ModGeom(/J,co) 4=_ Vt E IR, Pr{Z <_t} = f/ 01- (1 -,.,[{J+'_83
z

which imply

Vk E IN +, Pr{X = kce} = _(1 - c_)k-' and

v_._ _,pr{z = k'ce}=/_(1 -fl)_

if t>0

otherwise

an d
4.0

E[X] =- and
(t

E[Z] - ce(1 -fl)
fl

It is well known that both the geometric and modified geometric distributions are discrete

analogs of the exponential distribution. In particular, given an exponential random variable Y

with rate A > 0,

y ,.o Expo(,_) 4:=* Vt >_ O, Pr{Y < t} = 1 - ¢-;_t=_E[V] = A-',

one can determine a and fl so that X and Z match Y in expectation:

/.o

r[x] A-' s[Y] _ _ = ace _.,ld

E[z] _ ce(1-/3) _ A-' = E[Y] _ fl - ace
[3 I + )_ce'

and then, using these values for a and fl, the distributions of X and Z approximate that of Y

arl)itrarily well as the time-step ce is reduced:

lim Pr{X _< t} = lira 1 - (1 - Ace)[_J = 1 - c -At = Pr{Y _< t} and
wlO wlO

linl Pr{Z < /} = lira 1 - (1 )_o )L_-J +1_1o - _10 1 + Ace = 1 - ¢-_,t = Pr{Y _< t},

Note that ca'= Ace E (0, 1) implies co < A-1 , that is, it is not possible to match the mean of an

exponential random variable Y _ Expo(A) with a geometric random variable having a time-step

co > A-l. In the special case co = A-1, _ = 1 and the distribution of X degenerates to a constant:

X .._ Geom(1,co) --- Const(co). In the following, we allow this case and require co E (0, A-_]. No

such restriction exists in the case of the modified geometric distribution, where any co > 0 can be

used.



3 The minimum of a set of random variables

Consider now three sets of n _> 2 indel)endent random variables, {Xi : i ¢ N}, {Zi : i E N}, and

{}'} : i ¢ N} with matching means:

Vi E N, Xi _ Geom(ctl,W), E[Xi] = a-( 1 ::_ cti = ai w,

aiw , and
vi c N, zi ~ ModGeom(3.w), E[Zd = a_-_ _ 3_ - 1 + a,w

gi E N, Y, _ Expo(ai), E[}}] = A_-'.

Since w E NieN(O, a_-l], we obtain w E (0, aM1AX], where AMAX = max{,_ : i E N}.

It is well known that the minimum of each of these sets has the same type of distribution as

the elements of the set [5, 2]:

XO) = min{Xi :i ¢ N}

Z0) = min{Zi :i E N}

Y0) = rain{}) :i E N}

H-~ Gore -__(1 _i),w ,
iEN

,._ ModGeonl(1-H(l-[3i),w), and
iEN

MEN /

ltence, X0) , Z0) , and Y0) have different expectations:

E[Xo)] = 1- ri(l-cti)- 1- H(1-aiw) ¢ ai = E[}],)] and (1)

iEN iEN

w I-I(l- fli) -,

E[Z(,)]= 1- I-I(l-fli) -1 + H(1 +Aiw) / ai = E[}i,)]. (2)

IEN iEN

Theorem 1. For n >_ 2, E[X0) ] > E[Y0) ] > E[Z0) ].

Proof. We prove that E[X0) ] > E[Y0) ] by induction on n, hence we make the index n explicit

by writing E[X(,,,O] anti E[Y(,,,O].

Base step: For n = 2,

w

E[x0'2/] = 1 - (1 - a_w)(l - a2w)
1 1

> - r[E,,_)].
a! +a2-a|A2w Al+A2

Inductive Hypothesis: Assume that, for a given n, E[X0,,0 ] > E[]_,,0]. Then,

1 H_ a,_) > a, . H(1- a,w)> 1- _ a,w
-- -- \iEN / iEN iEN

iE N
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Figure 1: E[X(,)], E[Y(,)], and E[Z(,)] (n-- 1,..-,5, Vi, Ai -- 1) as a function of ca.

Inductive Step: Then E[X0,,,+0 ] > E[_,,_+,)], since

E[Xo,,_+_)]
co

co
>

iEN

iEN \iEN /

( )_1
iENu{,_+I }

The proof that E[Z(1)] < E[}'_,)] is analogous and is on,itted. QED.

In other words, the mininmm of n independent exponential random variables is always strictly

bounded in expectation by the minimums of n independent geometric and modified geometric

random variables with matching means. For example, if n = 2, and A1 = A2 = A,

z[x:,t] : (2A(_- ,_/2))-' > E[r(,)] = (2,_)-' > z[z(,)] : (2_(_+ _,_/2))-'.

E[X(,)] and E[Z(I)] coincide with E[Y_,)] only in the limit, as co I 0 (see figure 1):

limE[X(,)] lira to to (_--_ ]-'= = lim : x_ = £[g(,)]and
_to _1o 1 - I'-[ (I - A{_) o_t0 _ A/a; + o('.o) \{EN /

iEN iEN

= A{ = E[} _)].
CO ¢0

lim E[ZqJ = lim .= lim
cot0

iEN iEN

The convergence of E[X0) ] and E[Z0) ] to z[_11j a__ 10 can a_o be derived observing that

E[x(,)]-to < E[z{,j < El}i,}]< s[x:,}] < E[z(,)] + _,

which follows from the fact that (Xi - to) ,._ ModGeom(c_i,to) and (Zi + to) "_ Ceom(f_i,to), and

from Vi E N, c_i < _i, which imply that E[X0) - to] < E[Z0) ] and E[Z0) + a;] > E[X0) ].

The next section contains an explanation for these inequalities.

4



.4 Stochastic variability

Random variables with the same mean can be compared using the notion of stochastic variability,

descril)ed in Ross [3], for which there are two equivalent definitions. Y is said to be stochastically

more variable than X, X _<v Y, if

V increasing convex function g, E[g(X)] <_ E[g(Y)]

or, equivalently, if

Va >_ O, x(t) dt <_ v(t) dt.

An additional useful notion codifies the idea that the remaining lifetime of a random variable

conditioned on exceeding some value a has never greater expectation (NBUE: New Better Than

Used in Expectation), or never smaller expectation (NWUE: New Worse Than Used in Expecta-

tion), than the original lifetime. Formally, a nonnegative random variable A is NBUE if

Va>_0, E[A-a I A > a] < E[A]

and is NWUE if

Va_>0, E[A-a I A >a]>_ E[A].

Ross lists some important consequences of these definitions:

• If X and Y are nonnegative, X <_ Y, and E[X] = E[Y], then -X _<v -g.

• If g : IR" ---, IR is an increasing convex function, if Vi E N, Xi <__ Yi, {Xi : i E N} are

independent, and {Y/ : i E N} are independent, then

g( x,, x.2, . . ., x,_) <__g()_, )_, . . ., Y,_). '

• If X is NBUE, and Y is exponential with the same mean as X, then X _<_ Y.

• If Z if NWUE and Y is exponential with the same mean as Z then Y _<_"Z.

These last two facts are used to relate X ,.. Geom(a, ,_), Z _ ModGeom(/3, w), and Y .-_ Expo(,_)

with the same mean, 1)y showing that the geometric distribution is NBUE and that the modified

geometric distribution is NWUE. Let X _ Geom(ct,w), Z ,._ ModGeom(/i,w), and choose any

a _> 0. Using the memoryless property of the geometric distribution, we can derive:

E[X-a[X>a] = E[XIX>a]-a= laIw+E[X]-a<_E[X] and

E[Z- a ] Z > a] = E[Z ] X > a] -a = (l;] + 1)w+ E[Z]-a > E[Z].

Therefore, X _<_ Y _<_ Z.

Considering again the three sets of independent random variables with matching means {Xi :

i e N}, {Zi: i e N}, and {Y/ : i e N} observe that

min(a_ : i e N} = -max{-a_ : i e X}.

5



Sincemax is an increasing convex function and Vi E N,-Xi _<v -I_ _<v -gi,

max{-X, : i E X} _<vmax{-}_ : i C X) _<vmax{-Z_ : i E N},

implying that

-E[max{-Xi: i 6 N}] >__-E[max{-t} : i E N}] _> -E[max{-Zi: i 6 N}],

and thus that

E[min{X/: i E N}] : E[X(1)] >_ E[min{Y/ : i E N}] = ELY(,)] >_ E[min{Z{ : i E ¥}] = E[Z(I)].

5 Matching the minimums by changing the time-step

This section presents an explanation for the existence of the strict Inequality (1), and its quantifi-

cation, based on tile possibility of a tie for the minimum in the set {Xi : i E N}. A confirmation

of this intuition is found by defining a new random variable, W0), obtained dividing X0) by the

expected number of random variables tied for the minimum: the expectation of this "weighted

minimmn" W0) is indeed the same as that of Y(1).

The discrete nature of the geometric distribution implies that several random variables in

{X_ : i E N} might coincide with X0). Define I[1] to be the the set of indices among {1,...v}

corresponding to such random variables (/[11 is itself random):

I[11 = {i E N :Xi = XO)} _CN,I[1I # O.

The pmf of 1[11 is

Vs C N,s # 0, Pr{I[l] = s} = Pr{ViEs, Xi= X0)AVjE N\s, Xj > X0) }
OO

= _ Pr{Vi E s, Xi = kco A Vj E N \ s, Xj > kw}
k=l

)( )= _ 1-Iai(1-ai) k-' 1-I (l-aJ) k
k=l \iEs \jEN\s

= E 1-Icti 1-I (1 - aj) I-I(1 - at) k-'
k:l \iEs / \jEN\s 1

1- H(1 - (_l)
IEN

This result is more easily obtained observing that, because of the absence of memory of the geo-

metric distribution, /[1] and X(1) are independent, hence Pr{I[1 ] = s} is simply the product of the

one-step probability of success for the elements of s and of the one-step probability of failure for

the elements not in ,% normalized by the probability that at least one success occurs.



"Forexample,if n = 2, the three possible values for lit] and their prohabilities are:
A1 - A1A2co-1(1 - "2)

Pr{l[ll = {1}} = er{X, < X2} = 1 - (1 - a,)(1 - a2)

-.a(1 - cq)

Pr{ltq = {2}} = Pr{X1 < X2} - 1 - (1 - al)(1 - "2)

"1t_2

Pr{/[q = {1,2}} =- Pr{X, = X2} = 1 - (1 - a,)(1 - "2)

A1 + A2 - A1A.z_

),2 - AI A2w

Ai + £2 - A1A2._

A1),'2";

),1 + A.2- A1A.2_

In general, the probability that a particular Xi is equal X(1), or that i E 1111,is

oo

Pr{Xi=X(,)} = _Pr{Xi=k_oAVJ E N,j _ i, Xj >- kw}
k=l

oo

: _.,(1 - ._)k-1 II (1- .,)k-,
k=l jEN,j¢i

oo

= E"_ II (1- .j)_-'
k=l jEN

Cei

l- 1-I(1-<,)
jEN

hence, the expected number of completions at time XO) among {Xi : i E N} is

IEN

E[I/[,]I]---- EPr{Xi = Xo)} = 1- 1-[(1- c_j)"
iEN

jEN

We can define the "weighted" random variables {Wi : i E N}, where

oJ

x_ ~Ceom _,_[_t_ll] -Geom _,_o-
Vg E N, Wi - E[]I[1]I] ieN

which are still geometrically distributed random variables with the same success probabilities as

their original counterparts {Xi : i E N}, but with a reduced time-step. Then,

X_ } X(1)
:iEN -

I,V(I) = nlin{t'Vi : i E N} = rain E[I/t, lt] E[llt'll]

takes into account simultaneous completions by dividing the minimum completion time by the

expected number of completions (the corresponding quantity for the continuous case is still silnply

Y(t), since the probability of simultaneous completions is zero in this case). The expected value

of the weighted minimum for the geometric case coincides with the expected minimum for the

exl)onential case:
0)

[ X0) I E[X(1)] _ _e__N__ _ ¢0 - EAi = EtYo)]-- \iEN /

iEN iEN

1- l-I (1 - "a)
jEN



We conclude this section by observing that, while the result E[W(1)] = E[t_)] seems to imi, ly

that exact ties are the cause of Inequality (1), this is not correct, since the inequality holds even

when ties are not possible. This can be shown by considering a set of geometric random variables
{X* : i E N}, where

r r_ 1

Vi E '_,._i "_ Geom(_i,coi), El.Y*] = co__'2"

and, Vi E N, Vj E N,i _ j, tile ratio COi/CJj is not a rational number, hence, it is not possible to

find two integers ki and _:j that would results in a potential tie at time _iOJ i __ [_.jcoj.

6 Matching the minimums by time-shifting

In the previous section, we forced the expectation of the minimums of {Xi : i E N} and {Y/ :

i E N} to coincide by reducing the time-step of the geometric distributions, that is, transforming

{Xi: i E N} into {Wi : i E N}. While the result E[W(,)] = E[I_I)] is appealing, the weighted

random variables {W_ : i E N} do not match the original {Y/ : i E N} in expectation. A more

interesting result would be to modify our initial set of random variables {Xi : i E N} so that both

the individual random variables and the minimum match the corresponding exponential quantities
in expectation.

In this section, we accomplish exactly this by introducing the "shifted geometric" distribution,

a generalization of both the geometric and modified geometric distribution. Given 0 < a < 1,

ca > 0, and a E IR, we say that ,S' has a shifted geometric distribution with parameters a, co, and
or, ,_' ,._ ShiftGeom(cq co, or), if its pmf is

w E _, Pr{S = k_ + _,} = .(1 - (_)_

which implies that its CDF is

VtEIR, Pr{S<t}= { 1-(1-a)L_-_j+l ifl>cr0 otherwise

and that its expectation is

£[S] - _ + _.

In other words, given a random variable A ,-_ ModGeom(a), aJ > 0, and cr E IR, ,S"= A_ + cr -._

ShiftGeom(cLa_,_). Figure 2 shows the relationships between the geometric, modified geometric,
shifted geometric, and exponential distributions.

Given Y .._Expo(A), we can again consider the condition under which S and Y have the same
expectation:

E[S] - 1 - _ A-_ a,,Xco+c, = = EfY] _ _ =
c_ 1 - era + wA" (3)

Since c_ is a probability, it can only have values in [0, i]. Furthermore, EIS ] = _ when c_ = 0, so

we exclude this case. Then, S and Y have the same expectation for any choice of _ and or, as longas

coA

0<_= 1 _erA+co,( _< 1 _cr_<A -1

and _ is set according to Equation (3). A few observations are of particulffr interest:



[,Z'-ModGeom(oQ )

S'= Z'+ o Z=Z'_ X'=Z'+ 1

I S'-ShiftGe°m((I'°):} (Z-ModGeom(ot,c0)) [X'-Geom((:t) )

r "" T"" xr,.S = (S'-o)m + o S=Z+o X=Z+o3

[ S-ShiftGeom(ot,{0,o)J Y= lim°)$°'a--_" Z [X.---Geom(ot,_) )

_.. z = L.r/coJ

Y = limo).l.0,_a=_ " S - o / Y = limo$0,c(.=_ "X

s = Lv/o_J+ o _ x = [Vl_-I

[ Y-Expo(k)}

Figure 2: Relationships between the distril)utions discussed in this paper.

* Once ttle value of E[S] is fixed at A-1, decreasing tile time-shift a hy 5, possibly below zero,

causes a decrease in c_, so that E[A] increases by 6/w and E[S] = E[A]_-cr remains constant.

Since E[A] can be arbitrarily large, this explains why there is no lower bound for or.

• If cr = O, S' ,-_ ModGeom(a, co).

• Ifw < A-1 and o" = w, S "- Geom(a,w).

• If o- = A-', o_ = 1, hence S _ Const(cr) - Const()_ -1).

Consider now a set of modified geometric random variables with time-step one, {Ai : i E N}

and the set of shifted geometric random variables {Si : i E N} obtained fi'om them by changing

the time-step to _ and at)plying a time-shift a:

Vi E N, Ai ,,_ ModGeom(c_i), Si = Aico + a _ ,5'i --_ ShiftGeom(ai, co, or)

and set the parameters {t_i : i E N} so that:

Vi • N, E[Si] -
1 -- O_i

+ = = =

Since Vi • N, 0 < ai _< 1, the maximum value of rr is

wAi

1 - aAi + wAi"

cr < rain {A_-'} ( )-'-- iEN = nw{)_i} = /_MIAx"

The expectation of S(1 ) = nfin{Si : i • N} = A(l)co + cr is then

E[s<,)]

II(l--,)
iEN

co+O"

1- H(1 - ai)
iEN

9



where

satisfy

iEN I -- crAi+ coal
= _-]-cr

ieN 1 -crAi + wAi

II (l - _)`o
iEN Pn

II(l- crAi +coAi)- 1-I(1 - aAi) q_-P,_
iEN iEN

w+_

p,,= II(1-_),_) and q,,= II(1-_),_+co),_)
iEN iEN

• re" < )';lAX, P,_ < q,,"

• P,_lo=o = 1, q,_[_=o= 1_( 1+co)'/) > I.
iEN

• p.I_:,\Z]A _ = O.

• If co < )';lAX, q,_l_:., = 1.

Theorem 2. There exists a unique value or* < ),-1 for which E[S(,)] = E[Y(I)].-- MAX

Proof. To show the existence of or*, it is sufficient to observe that E[SO) ] is a continuous function

of cr over (--oc,)'_]AX ], that

E[s/,)] _o co (_)-'= < )'i = E[Yo)]
- 1](1 +co,_,)- 1 ,,ieN

iEN

(this is inequality (2)), and that

' (z/= )`MAX > )'i

MEN /

Ilence, by. continuity, there must exist a vMue or* 6 (0,),-1MAX) satisfying

E[s(1)]_=_.= E[E1)].

--1
Furthermore, if co < )`MAX,

1](1 - co)'i) -1

E[,S'(,)] o_,. w (_ ) E[Y(1: iEN CO + CO = > )'i = )]

- 1- [I(I-wA/) 1- I](l-co)`i) \iEX /
iEN i6N

)`MAX})"(this is Inequality (1)), hence, in general, a* E (0,rain{co, -1

We prove the uniqueness of cr* by induction on n, showing that E[S0) ] is a strictly increasing

flmction of cr over (-co,)'_]ax], hence we make the index n explicit in E[S(_)] by writing

E[S(,,,O] = min{Si : i E N}.

10



"Basestep: For n = 2,

an d

dE[S 0 ,2)]

(1 - aAl)(1 - erA,2)

(1 - erA, 4- wA,)(l - erA2 + wA2) - (1 - crA,)(l - erA2) _ + cr

1 + crAlA2(w - c_)

A1+ A2 + A1A2(02- 2a)

"_1 "_2(02()k1 -{- /_2 -- 2/_1 /_2 O') -t- 2( 1 -- O"_1 -- O"A 2 -_- 0 -2/_1 /_2 ) -t- 02 2/_1 "_2 )

dcf (A1 ÷ A2+ A1,\2(02- 2a)) 2

>_0 for or<AM1AX

A1A2(_()_I(1- O')t2)d- A2(1- erA,) + 2(1- aA,)(1 - crA2)'+022A, A,2)

In particular,

all d

(t_ + A,_+ A1A2(02- 2a)) '2

dE[S 0 ,2)] 1
lira E[S(I,2)] =-oc and lira

_-_-oo a_-c_ do" 2

E[S(,,2)] _=_*4x -' dE[S(,,2)] a=_';]AX-_ AMA X and _ =

where AMIN = min{A1, A2}.

02

-1
w 4- AMI N -- A_;AX

>0.

Inductive Hypothesis: Assume that, for a given n,

P,_
E[S(1,,_].,,-- 02+cr

q,_ - p,_

is a strictly increasing function of a over (-0% AM1AX], that is

(q,_- p,d_ (q,_- p,_)_

which implies

02+1>0

Vcr E (-oc, A_/1AX], co(p_q,_ - p,_q;_) > -(% - p,_)'2

E -1 ,1
w + AMI N

Inductive Step: Then the same holds for n + 1, that is,

P_+1 pn(l - crAn+l )
cower=

E[S(I'n+I)] - q,_+l - P,_+I qn(1 -- rr)_,_+! + 02/\,_+1) -- p,_(1 -- CrAn+l) w + or,

where A,_+l is the rate of the (n+l)-th exponential random variable, is a strictly increasing flmction

of cr over (-0% maX{AMAX, A,_+l}-1], that is

>--(qn--p,,) 2 for tT_AMIAX

dE[S(,,,_+,)] _ (1 o'A,_+,)(l - crA,_+, + 02A,,+,) (p,_q,; - p,_q,_)w' -A,_+,w'2 "2q,_p,_ + 1
dcr (q,_(1 - crA,_+, + 02A,_+,) - p,_(1 - o'_,__t_1)) 2

- A'_+lw q'_P'_ + 1> (1-crA,_+l)(1-crA,_+l +_A,_+_)(-(q,_ p,_)z)_ '2

(%(1 - crA,_+_ + wA,_+, ) - p,_(1 - crA,_+_ ))_

= A,_+,w(qn- p,_)((% + p,_)(l - crA,_+_) + A,_+_02q,, > 0
(%(1 - crA,_+_ + wA,_+_) - p,_(1 - aA,_+_)) _

11



-1
since, cr < An+ 1 and Vet 6 (-_,max{Am.4x,A,_+l}-l],% > P,_. QED.

We might now ask whether this value or* for which E[S(1)] = E[Y0)] is such that the other order

statistics coincide as well, that is, whether

vi N,i > l, E[S,t]I.=.. ---,:[V/0f

This is indeed true for n = 2, since

E[S(,)] nt- E[S(2)] = E[S,]-{- E[S2] = _[YI] + E[Y2] = E[}(l)] + E[}i2)]

implies that, whenever E[S(,)] = E[]_il)] ,

E[,%J =

Unfortunately, this is not true in general for n >_ 3, as it can be seen" considering the homogeneous

case. When Vi C N, Ai = A,

Pr{S(2) > kco + a} = Pr{A(2 ) > k}

XiEN

= Pr{Vi• N, Ai > k}+_Pr{eti<_kAgj• N,j#i, Aj > k}
iEN

= ((1 - a)'_) k+' + n(1 - (1 - _)k+l)((1 -- a)n-1) k+l

= n(1 - (_)(,_-l)(k+,) _ (n- 1)(1 - c_) n(k+l)

an d

oo

E[A(2)] = _ Pr{A(2)> k}
k=O

oo

h=0

n(1 - a) ('_-')(k+l) - (n - 1)(1 - ce)''(k+')

n(1 - a) '_-' (n- 1)(1 - c_)'_

1 - (1 - _)'_-' 1 - (1 - _*)'_

Hence, considering ,5̀(2) = A(2)w + cr and substituting a from (3),

n(1 - erA) '_-I

era - coA)n-I - (1 - erA) '_-1 (1 - o'A - _-_)5--_-- crA),_

while, due to the absence of memory of the exponential distribution,

co+t'r,

= + ((,-

It can he easily verified numerically, for example when n = 3, co = 1/2, A : 1, that the only real

root of E[S0) ] = E[Y(1)] is cr ,_ 0.173927, while the only real root less than A-1 of E[S(2)] = E[Y(2)]

is a _ 0.346961.
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7 Variate generation application

The results of Section 3 can be used in variate generation for Monte Carlo simulation. For brevity,

only the geometric distribution is considered. Results for the modified geometric and shifted geo-

metric distributions are similar.

To generate a single E xpo(A) random variate Y by inversion [1]

y __1 in(1 - u),
A

where U _ Unif(0, 1). The random number 1 - U can be replaced by U for increased speed

although the direction of monotonicity is reversed. If Y _ Expo(A) then [Y] _ Geom(l - c -;_)

since Pr{[Y] = k} = c-(k-1)'\(1 - c -_) for k E IN+ • Thus to generate a Geom(a) random variate

X requires only a single line of code

Fln( --
X .-- /ln(1

If the time-step is u, then the appropriate modification to generate a Geom(cr,_) random variate

is

[ln(!- v)1
X -- /ln(1 _)')/_"

The straightforward approach to generating the nlininrum )"(1) of n exponential random variables

{Y} ,,_ Expo(A_) : i E N} is to generate n exponential variates Y_,...,E_, then determine the

mininlum and the associated index (if required). This approach becomes time consuming as n

increases. A much faster approach is to generate the minimum as

In(1 - U)

iEN

where the denominator needs to be computed only once. This approach is both synchronized (one

random varlate from Unif(0, 1), Ui is needed to generate one random variate for )_),) and monotone

(given two random variates from Unif(0, 1), U 1 and U2, U1 < 1}'2=:::_1)1 < }'il)2 ). TO generate a

variate corresponding to the index J of the minimum value, use the pmf

Aj

Pr{J=j}- _Ai,

iEN

for j E N.

There are two cases to be considered when generating the minhnum of geometric random vari-

ables. The first is when the modeler wants the means of the individual random variables (but not

of their ndnimunis) to match. The second is when the modeler wants the means of the minimums

(but not of the individual random variables) to match. Consider generating the minimum X(I) in

the first case, where {Xi ", Geom(ai,co) : i E N}. First generate the minimum

x(,) EV(7 : .,)
iEN

13



To generatea randomsetof indices111]corresponding to completion at th6 nJninmm value, use

the pmf

Pr{I[,] = s} = 1- 1-I (1 - c_l)
lEN

for a C_ N,s # 0.

There are two costs to consider when generating a set of indices corresponding to X0). The

first cost is the set-up cost incurred once at the beginning of a siinulation. If all of the 27_- I subsets

of indices are to be considered, the (0, 1) interval must be partitioned into as many pieces prior to

generating any variates. The second cost, often called the marginal cost to generate a variate, is

incurred each time a random variate is generated. It involves generating a Unif(0, 1) variate and

searching the partition determined at the beginning of the simulation for the appropriate cell. This

cell corresponds to a set of indices for the generated geometric random variable. The above scenario

is worst-case, since time will be saved in both the set-upand marginal steps if, for example, the

modeler is only interested in whether or not a tie occurred.

The generation of W0) , where the expected values of the minimums of the exponential and

geometric random variables coincide, requires only a slight modification to the previous approach.

At the beginning of a simulation, E[II[_II ] should be calculated. Thus the reduced geometric is

X0)

we) E[tII,II]-

where X(I) is generated using the previous technique.

8 Conclusion

We have shown how, if the random variables {Xi : i E N}, {Yi : i E N}, and {Zi : i E N}

model the same set of n concurrent activities using geometric, exponential, or modified geometric

distributions, respectively, with given expectations {A_-1, the expected value of the minimums are

different, E[X0) ] > ElY, s)] > E[Z(1)]. Stochastic variability is employed to justify the result.

We then consider two different ways to match the expectation of the minimums. First, by

taking into account the possibility of ties in the geometric case, we define the "weighted minimum"

W(a), and obtain E[W(a)] = E[}]_)], but this operation corresponds to decreasing the time-step

of the individual geometric distributions, hence their expectation. Alternatively, we introduce

the "shifted geometric distribution", which a generalizes both the geometric and the modified

geometric. We can then define a set of shifted geometric random variables {5'/ : i E N}, which

match in expectation the exponential random variables both individually, E[,_i] = Ai-1, and their

minimum, E[S0) ] = ELY0)]. Generating variates is straightforward.
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